Francesville Water Department 2020 CONSUMER CONFIDENCE REPORT

Francesville Utilities routinely monitors for contaminants in your drinking water according to Federal and State laws. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, and in some cases, radioactive material and can pick up substances resulting from the presence of animals or from human activity. The presence of contaminants does not necessarily indicate that the water poses a health risk.

Note: Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers.

More information about contaminants and potential health effects and EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants and can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at (800) 426-4791.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. Our water source is groundwater. We have three wells, two are located in the park, the third is in the southwest part of town. These wells are supplied by the Siluruan Devonian Aquafur.

Possible contaminants in source water might include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- Pesticides and herbicides which may come from a variety of sources such as agriculture, storm water runoff, and
- Organic chemicals, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic
- Radioactive materials, which can be naturally occurring or be the result of oil and gas production and mining

Some of the terms and abbreviations used in this report are:

mcL.	rms and abbreviations used in this report are: Maximum Contaminant Level, the highest level of a contaminant that is allowed in drinking water MCL's are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.
------	--

MCLG:	Maximum Contaminant Level Goal, the level in a contaminant in drinking water below which there is no known or expected risk to health.
MRDL:	is no known or expected risk to health.

MRDL:		mon there
MRDLG	Maximum Residual Disinfectant Level, the highest level of disinfectant allowed in drinking there is no known or expected risk to health	ng water.
AI.	there is no known or expected risk to health.	w which

AL:	there is no known or expected risk to health.
AL.	Action Level; the concentration of a contaminant which with a second contaminant which
	Action Level; the concentration of a contaminant which, when exceeded, triggers treatment or other requirements or action which a system must follow
TT:	Treatment Tool with a System must 10110W

Treatment Technique, a required process intended to reduce the level of a contaminant in drinking

water.

Nephelometric Turbidity Unit, a measure of the clarity(or cloudiness) of water. NTU:

Parts per million, or, milligrams per liter. ppm:

Parts per million (ppm) one part per million corresponds to one minute in two years or a single

penny in \$10,000.

ppb: Parts per billion, or micrograms per liter.

Parts per billion (ppb) - one part per billion corresponds to one minute in 2,000 years, or a single

penny in \$10,000,000.

pCi/L: picocuries per liter (a measure for radiation).

Potential violation or one that is likely to occur in the near future.

n/a: Either not available or not applicable

Not Detected (the result was not detected at or above the analytical method detection level). ND:

The table below lists all the contaminants we detected. Unless otherwise indicated, the data presented in this table is from testing done between January 1 and December 31, 2009. The Indiana Department of Environmental Management (IDEM) requires us to monitor for certain contaminants at a frequency less than once per year because the concentrations of these contaminants are not expected to vary significantly from one year to another. Some of the data, though representative of the water quality, may however be more than one year old.

DETECTED

Inorganic Contaminants

Date	Contaminant	MCL	MCLG	Units	Result	Min	Max	Above AL	Violates	Likely Sources
2018	Barium	2	2	ppm	0.065 -0.11	0.065	0.11		N N	Discharge of Drilling wastes; Discharge from metal refineries; Erosion of
2018	Lead	15 (AL)	0	ppb	4.2				N	natural deposits Corrosion of household plumbing systems; Erosio
2018	Copper (90 th percentile)	1.3 (AL)	1.3	ppm	0.39				N	of natural deposits. Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household
2018	Flouride	4	4	Mg/I	0.3- 0.5	0.3	0.5		N	plumbing systems Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
2018	Nitrate (as N)	10	10	Mg/I	.08	0	1		N	Runoff from fertilizer use; leaching from septic tanks, sewage; Erosion of natural deposits
.010	Nitrite	1		Mg/l	0.01- 0.02	0.01	0.02		N	Runoff from fertilizer use; leaching from septic tanks, sewage; Erosion of natural deposits

Disinfectant Byproducts

	Contaminant	MCL	MCLG	Units	Result	Min	May	Above AL	1 1 2 2	
2020	Total Haloacetic	60	Control of the last of the las	pph	0.1.2	VID	IVIAX	Above AL	Violates	Likely Sources
	Acids (haa5)	00		ppb	0-1.3	ND	1		N	By-product of drinking water
2020 Total Trihalome	Total	80	nnh	007	N. U.S.				chlorination	
	Trihalomethanes			ppb	0-0.7	ND	0.7		N	By-product of drinking water chlorination

Radiological Contaminants

Date	Contaminant	MCL	MCLG	Units	Result	Min	Max	About AT		
2019	Gross Alpha, Including Ra,Excld	15	0	pCi/l	5.9- 6.3	5.9	6.3	Above AL	Violates N	Likely Sources Erosion of natural deposits
03/15/2016	Radium, Combined (226,228)	30	0	pCi/l	1.2-5				N	Erosion of natural deposits

Unregulated Contaminants

AND RESIDENCE OF LABOUR DESIGNATION OF THE PERSON OF THE P	MCL	MCLG	Units	Result	Min	Max	Above AT	V:-1					
Bromide	n/a		Mg/l	0.06008	CONTRACTOR OF THE PARTY	Barrana Million 15 chapter	Above AL	AND DESCRIPTION OF THE PERSON	Likely Sources				
Sodium	Na		NA=/1			0.1		N					
	INd	1,4	1,14	1,14	1,14		IVIg/I	18.5	18	19		N	Erosion of natural deposits;
3/12/2003 Sulfate n/a	Sulfate	n/a		Mad	67.5					Leaching			
	I U	ID d	IVIg/1 67.5	47	88		N						
		Bromide n/a Sodium Na	Bromide n/a Sodium Na	Bromide n/a Mg/l	Bromide n/a Mg/l 0.06008 Sodium Na Mg/l 18.5	Bromide n/a Mg/l 0.06008 ND Sodium Na Mg/l 18.5 18	Bromide n/a Mg/l 0.06008 ND 0.1 Sodium Na Mg/l 18.5 18 19 Sulfate n/a Mg/l 18.5 19	Bromide n/a Mg/l 0.06008 ND 0.1	Bromide n/a Mg/l 0.06008 ND 0.1 N Sodium Na Mg/l 18.5 18 19 N Sulfate n/a Mg/l 67.5 43.7 99.7				

Residual Disinfectant

Date	Contaminant	1 MOV				general					
		MCL	MCLG	Units	Result	Min	Max	Above	Violates	Likely Sources	
2020	Chlorine Residual	4 MRDL	4	Mg/l	1	1	1	AL	No	Water additive (disinfectant) used to control microbiological	
										organisms	

Special Note on Lead:	If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Francesville Utilities is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at
-----------------------	--

Our Watershed Protection Efforts

Our water system is working with the community to increase awareness of better waste disposal practices to further protect the sources of our drinking water. We are also working with other agencies and with local watershed groups to educate the

If you have any questions about this report or concerning your water utility, please contact Brad Stevens at 567-9521. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the first and third Monday each month at 7:30 PM at the town hall.

FRANCESVILLE UTILITIES